Difference between revisions of "Chemical Process Design Wiki"

From processdesign
Jump to: navigation, search
Line 1: Line 1:
 
<!-- Header table. Introduction. -->
 
<!-- Header table. Introduction. -->
 
{| class="wikitable"
 
{| class="wikitable"
 +
|- width = "100%"
 
|- valign="top"
 
|- valign="top"
{| class="wikitable" style="padding:5px"
+
{| class="wikitable" style="padding:2px"
 
|-
 
|-
 
|  
 
|  
 
'''Welcome to the Northwestern University Chemical Engineering Process Design Open Textbook.''' <br />
 
'''Welcome to the Northwestern University Chemical Engineering Process Design Open Textbook.''' <br />
This electronic textbook is a student-contributed open-source text covering the materials and student design projects of our capstone design courses at Northwestern University.
+
This electronic textbook is a student-contributed open-source text covering the materials used in our chemical engineering capstone design courses at Northwestern.
 
|-
 
|-
 
|
 
|
Line 12: Line 13:
  
 
|}
 
|}
| width="10%" |
 
|
 
{| class="wikitable" style="background-color:#f0f0f0; padding:5px"
 
 
|-
 
|-
 
|
 
|
Line 25: Line 23:
 
__TOC__
 
__TOC__
  
<!-- Parent Table. Contains all 3 child category tables. -->
+
<!-- Parent Table. Contains all 2 child category tables. -->
 
{| class="wikitable"
 
{| class="wikitable"
 
|- valign="top"
 
|- valign="top"
Line 64: Line 62:
 
# [[ElectricVehicleCruiseControl | Cruise control for an electric vehicle]]
 
# [[ElectricVehicleCruiseControl | Cruise control for an electric vehicle]]
 
# [[Biology Application | Blood Glucose Control in Diabetic Patients]]
 
# [[Biology Application | Blood Glucose Control in Diabetic Patients]]
More information on chemical process modeling in general at [http://eweb.chemeng.ed.ac.uk/courses/control/restricted/course/advanced/outline5.html ECOSSE example 1] and [http://eweb.chemeng.ed.ac.uk/courses/control/restricted/course/fourth/course/casestudy/index.html ECOSSE example 2]
+
More information on chemical process modeling in general at [http://eweb.chemeng.ed.ac.uk/courses/control/restricted/course/fourth/course/casestudy/index.html ECOSSE example 2]
 
|} <!-- End Process Control Introduction child table -->
 
|} <!-- End Process Control Introduction child table -->
  
Line 75: Line 73:
 
|-
 
|-
 
|
 
|
=Process Design Projects=
+
=Chemical Process Design Projects=
 
|-
 
|-
 
|
 
|

Revision as of 18:09, 20 December 2013

Welcome to the Northwestern University Chemical Engineering Process Design Open Textbook.
This electronic textbook is a student-contributed open-source text covering the materials used in our chemical engineering capstone design courses at Northwestern.

If you would like to suggest changes to these pages, please email you[at]northwestern.edu .


Northwestern University Chemical Process Design Open Text Book


Contents


Chemical Process Design Theory and Method

Sensors and Actuators

  1. Control Systems: Measurement devices
  2. Temperature sensors
  3. Pressure sensors
  4. Level sensors
  5. Flow sensors
  6. Composition sensors
  7. pH and viscosity sensors
  8. Miscellaneous sensors
  9. Valves: types, kinds, and selection
  10. Valves: modeling dynamics


More information on sensors and actuators at ECOSSE

Modeling Case Studies

  1. Surge tank model
  2. Heated surge tank see also ECOSSE
  3. Bacterial chemostat
  4. ODE & Excel CSTR model w/ heat exchange
  5. ODE & Excel model of a simple distillation column
  6. ODE & Excel model of a heat exchanger
  7. ODE & Excel model of an adiabatic PFR
  8. Cruise control for an electric vehicle
  9. Blood Glucose Control in Diabetic Patients

More information on chemical process modeling in general at ECOSSE example 2

Chemical Process Design Projects

Mathematics for Control Systems

  1. Dirac delta (impulse) function (10/09)
  2. First-order differential equations (12/14/09)
  3. Second-order differential equations (10/13)
  4. Taylor Series
  5. Laplace Transforms

MIMO Control

  1. Determining if a system can be decoupled
  2. MIMO control using RGA see also ECOSSE
  3. MIMO using model predictive control
  4. Neural Networks for automatic model construction
  5. Understanding MIMO Control Through Two Tanks Interaction

Consult the User's Guide for information on using the wiki software.

Getting started