Pressure Vessels

From processdesign
Jump to navigation Jump to search


Title: Pressure Vessels

Author: David Chen

Steward: Fengqi You

Date Presented: January 13, 2014 /Date Revised: January 14, 2014


Introduction

Codes for pressure vessels can be found in the ASME Boiler and Pressure Vessel Code (ASME BPV code). While there is no formal definition, generally any closed vessel over 150 mm in diameter and that will experience a pressure difference of greater than 0.5 bar can be classified as pressure vessels. Types of equipment that can fit these descriptions include many reactors, separation columns, flash drums, heat exchangers, surge tanks, and storage vessels. Pressure vessels with a wall-thickness:diameter ratio of less than 1:10 can be classified as thin-walled, and the rest, thick-walled.(Towler) Pressure vessels typically consist of a cylindrical shell and elliptical or hemispherical heads at the ends (Peters) Generally, chemical engineers will not be directly involved in detailed mechanical design of pressure vessels. This will be handled by mechanical engineers with experience in the field. However, chemical engineers will need to understand basic concepts of pressure vessel design in order to estimate costs and communicate specifications to those who will carry out the design (Towler/UOP).

Basic data required by pressure vessel design engineer. It will be important for chemical engineer and vessel design engineer to communicate very closely(Towler pg 1-2).: 1. Vessel function

2. Process materials and services (corrosion, deposits, etc.)

3. Operating conditions (temperature and pressure)

4. Materials of construction

5. Dimensions and orientation

6. Type of vessel heads to be used

7. Openings and connections required

8. Heating/cooling requirements

9. Agitation requirements

10. Specification of internal fittings

Designs and Codes

Many countries have codes and standards concerning pressure vessels. Compliance is usually legally required. The codes provide guidance on design, materials of construction, fabrication, inspection, and testing. In North America, the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME BPV Code) is used. There are twelve sections, and section VIII has three subdivisions. The section titles are listed below. Other sets of codes exist for storage tanks, fittings, and piping. It is important to always use the most recent revisions in design. (Towler 3-5)

TABLE "American Society of Mechanical Engineers Boiler and Pressure Vessel Design Codes"

I Rules for construction of power boilers

II Materials

III Nuclear power plant components

IV Rules for construction of heating boilers

V Nondestructive examination

VI Recommended rules for the care and operation of heating boilers

VII Recommended guidelines for the care of power boilers

VIII Rules for the construction of pressure vessels

     D1
     D2     Alternative rules
     D3     Alternative rules for the construction of high pressure vessels

IX Welding and brazing qualifications

X Fiber-reinforced plastic vessels

XI Rules for in service inspection of nuclear power plant components

XII Rules for construction and continued service of transport tanks

Design Temperature

Different temperature allowances are used above and below normal operating tempratures. For temperatures between -30 and 345 ⁰C, Turton gives a maximum allowance of 25 ⁰C above maximum operating temperature should be included. Above this, an even higher design allowance is used (Turton pg 1). Towler/UOP gives 50 ⁰F above the maximum operating temperature and -25 ⁰F below the minimum. (Towler/UOP)

Maximum allowable stress is highly dependent on temperature, because metals weaken with increasing temperature. The vessel should not operate at higher temperature than the highest at which the maximum allowable stress was evaluated.

There is also a minimum temperature for which the vessel can be guaranteed to operate safely. Metals may become brittle at very low temperatures (Towler/UOP).The minimum design metla temperaure (MDMT) is the lowest temperature that can be expected in the vessel. (Towler)

In specifying the maximum and minimum temperatures, disturbances caused by upstream processes and external factors need to be taken into account. These disturbances may include:transient conditions, upsets, auto-refrigeration, climate, other cooling factors. (Towler pg 8-9, Towler/UOP)

Design Pressure

Materials

Steel is the most common material used in construction of tanks and pressure vessels. Other construction materials include other alloys, wood, concrete, or fiber-reinforced plastics (some low-pressure applications).

Materials must be chosen that will be able to resist deformation and failure at the process temperature and pressure, and be compatible with the internal material. (Peters, pg 552/ Towler pg 8-9/ Towler/UOP) Other factors for selection include ease of fabrication, availability of parts, and cost. (Towler/UOP)

Wall Thickness

The required wall thickness of a vessel will depend on many factors, including: the strength of the metal at operating conditions (temperature and pressure), diameter of the tank, and the joint efficiencies. According to Peters, in "Plant Design and Economics for Chemical Engineers," minimum wall thickness, not including corrosion allowances, should not be less than 2.4mm for welded or brazed construction and 4.8mm for riveted construction. Thickness for unfired steam boilers should not be less than 6.35 mm. (Peters 552) Turton gives heuristics for wall thickness for rigidity based on vessel diameter: 4 mm (0.25 in) for 1.07 m (42 in) diameter and less than 8.1mm (0.32 in) for 1.07-1.52 m (42-60 in) diameter, and 11.7 mm (0.38 mm) for more than 1.52 m (60 in) diameter.

Minimum wall thicknesses do not include corrosion allowances.

Corrosion Allowances

In general, corrosion allowances will range from 1.5-5mm. Corrosion allowances for heat transfer equipment are smaller, because wall thickness has an important effect on heat transfer. (Towler/UOP)

Corrosion and erosion will lead to eventual thinning of walls, which compromises mechanical integrity. Corrosion allowance is constructing the vessels with thicker walls to allow for the thinning. the Peters, Timmerhaus, and West suggest 0.25 to 0.38mm annually or 3mm for 10 years.

Turton et al. suggest a corrosion allowance 8.9 mm (0.35 in) for known corrosive conditions, 3.8 mm (0.15 in) for noncorrosive streams, and 1.5 mm (0.6 in) for stream drums and air receivers.

Testing

Nondestructive testing

Nondestructive testing methods are ways of evaluating the integrity of a vessel without compromising it. Inspections need to be carried out for new vessels and regularly once operation begins.

The simplest is a visual inspection for cracks or defects on the surface. It is also the cheapest, requiring only an inspector.

Radiography is used to detect subsurface cracks and defects. It is difficult and expensive, and may require specialized inspectors. It is required by the code in certain cases.

Ultrasonic detection can be used during operation to detect wall thinning.

Pressure Testing

The ASME BPV Code requires pressure testing with an inspector present before vessels can be approved.

Both hydraulic and pneumatic pressure tests are used. Hydraulic testing is preferred to pneumatic for safety reasons because much less energy is stored in compressed liquid than in compressed gas (Towler, Towler/UOP)

Conclusion