Difference between revisions of "Reactor"

From processdesign
Jump to: navigation, search
(Preliminary Introduction section edit and addition of references)
(Added more references)
Line 25: Line 25:
 
===Simple Rate Reaction===
 
===Simple Rate Reaction===
 
===Managing Reactions===
 
===Managing Reactions===
==HYSYS Reactors<ref>AspenTech. ''HYSYS 2005.2 Simulation Basis.'' Chapter 9 (2005)</ref><ref>Rice University Chemical Engineering Department, [http://www.owlnet.rice.edu/~ceng403/hysys/reactions.html "Reactions in HYSYS"]</ref>==
+
==HYSYS Reactors<ref>G.P. Towler, R. Sinnott, ''Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design.'' p.186-194, Elsevier (2012).</ref><ref>AspenTech. ''HYSYS 2005.2 Simulation Basis.'' Chapter 9 (2005).</ref><ref>Rice University Chemical Engineering Department, [http://www.owlnet.rice.edu/~ceng403/hysys/reactions.html "Reactions in HYSYS"]</ref>==
 
===Plug Flow Reactor (PFR)===
 
===Plug Flow Reactor (PFR)===
 
===Continuous Stirred Tank Reactor (CSTR)===
 
===Continuous Stirred Tank Reactor (CSTR)===
Line 33: Line 33:
 
===Yield Shift Reactor===
 
===Yield Shift Reactor===
 
==Simulation==
 
==Simulation==
===Degrees of Freedom===
+
===Degrees of Freedom<ref>R.M. Felder, R.W. Rousseau, ''Elementary Principles of Chemical Processes.''  3rd edition, Wiley (2005).</ref><ref>[http://en.wikibooks.org/wiki/Introduction_to_Chemical_Engineering_Processes/Problem_considerations_with_molecular_balances "Introduction to Chemical Engineering Processes: Degree of Freedom Analysis on Reacting Systems"]</ref>===
 
==Conclusion==
 
==Conclusion==
 
===Additional Options===
 
===Additional Options===
 
==References==
 
==References==
 
<references/>
 
<references/>

Revision as of 15:38, 6 February 2015


Authors: Vincent Kenny [2015] and Stephen Lenzini [2015]

Steward: Jian Gong and Fengqi You


Contents

Introduction

Process simulation is extremely beneficial to engineers, allowing them to further understand the process, identify process advantages and limitations, and provide quantitative process outputs and properties. Modeling reactors and their corresponding reactions is difficult by nature but can be rewarding if done correctly. This page provides essential information on the topic of reactor simulation using the computer program Aspen HYSYS.

Aspen HYSYS Reactor Simulation Basics

The HYSYS program allows the user to define reactions primarily based on desired model outputs and available information. After defining process components, the user can choose a reaction type as listed in the section below.

Limitations

Because simulation requires reaction characteristics, parameters, and other information, it is important to conduct background research appropriate to the reaction of interest before beginning the actual simulation. If theoretical or empirical data do not exist for the reaction, it may be difficult or impossible to conduct a computer simulation (see Additional Options). Of course, the phase of the reaction must be known; unfortunately, however, HYSYS does not support solid phase modeling[1] and thus a different approach must be chosen.

Research

Phase

Fluid Package

Defining Reaction Characteristics

HYSYS Reactions

Components

Conversion Reaction

Equilibrium Reaction

Heterogeneous Catalytic Reaction

Kinetic Reaction

Simple Rate Reaction

Managing Reactions

HYSYS Reactors[2][3][4]

Plug Flow Reactor (PFR)

Continuous Stirred Tank Reactor (CSTR)

Equilibrium Reactor

Conversion Reactor

Gibbs Reactor

Yield Shift Reactor

Simulation

Degrees of Freedom[5][6]

Conclusion

Additional Options

References

  1. ^ AspenTech, "FAQ: Solids Modeling in AspenPlus", 2014
  2. ^ G.P. Towler, R. Sinnott, Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. p.186-194, Elsevier (2012).
  3. ^ AspenTech. HYSYS 2005.2 Simulation Basis. Chapter 9 (2005).
  4. ^ Rice University Chemical Engineering Department, "Reactions in HYSYS"
  5. ^ R.M. Felder, R.W. Rousseau, Elementary Principles of Chemical Processes. 3rd edition, Wiley (2005).
  6. ^ "Introduction to Chemical Engineering Processes: Degree of Freedom Analysis on Reacting Systems"